326 research outputs found

    The Instruments of Place Branding: How is it Done?

    Get PDF
    Place branding is the idea of discovering or creating some uniqueness, which differentiates one place from others in order to gain a competitive brand value. This article is not about the concepts or justifications but about how it is actually done at the local level, especially as part of broader conventional place management policies. Three main local planning instruments are widely used throughout the world in various combination in diverse places, each of which is described and exemplified here. These are first, personality association, where places associate themselves with a named individual, from history, literature, the arts, politics, entertainment, sport or even mythology, in the hope that the necessarily unique qualities of the individual are transferred by association to the place. Secondly, the visual qualities of buildings and urban design is an instrument of place-branding available to local planners. This could include flagship building, signature urban design and even signature districts. Thirdly, event hallmarking is where places organise events, usually cultural or sporting, in order to obtain a wider recognition that they exist but also to establish specific brand associations. Lessons are drawn from practice about the importance of combining these instruments and integrating them into wider planning and management strategies

    University of Groningen Tourism and the heritage of atrocity

    Get PDF

    The role of discharge variability in determining alluvial stratigraphy

    Get PDF
    We illustrate the potential for using physics-based modeling to link alluvial stratigraphy to large river morphology and dynamics. Model simulations, validated using ground penetrating radar data from the Río Paraná, Argentina, demonstrate a strong relationship between bar-scale set thickness and channel depth, which applies across a wide range of river patterns and bar types. We show that hydrologic regime, indexed by discharge variability and flood duration, exerts a first-order influence on morphodynamics and hence bar set thickness, and that planform morphology alone may be a misleading variable for interpreting deposits. Indeed, our results illustrate that rivers evolving under contrasting hydrologic regimes may have very similar morphology, yet be characterized by marked differences in stratigraphy. This realization represents an important limitation on the application of established theory that links river topography to alluvial deposits, and highlights the need to obtain field evidence of discharge variability when developing paleoenvironmental reconstructions. Model simulations demonstrate the potential for deriving such evidence using metrics of paleocurrent variance

    Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs

    Get PDF
    Site-specific homing endonucleases are capable of inducing gene conversion via homologous recombination. Reprogramming their cleavage specificities allows the targeting of specific biological sites for gene correction or conversion. We used computational protein design to alter the cleavage specificity of I-MsoI for three contiguous base pair substitutions, resulting in an endonuclease whose activity and specificity for its new site rival that of wild-type I-MsoI for the original site. Concerted design for all simultaneous substitutions was more successful than a modular approach against individual substitutions, highlighting the importance of context-dependent redesign and optimization of protein–DNA interactions. We then used computational design based on the crystal structure of the designed complex, which revealed significant unanticipated shifts in DNA conformation, to create an endonuclease that specifically cleaves a site with four contiguous base pair substitutions. Our results demonstrate that specificity switches for multiple concerted base pair substitutions can be computationally designed, and that iteration between design and structure determination provides a route to large scale reprogramming of specificity

    Influence of Dunes on Channel‐Scale Flow and Sediment Transport in a Sand Bed Braided River

    Get PDF
    This is the final version. Available on open access from the American Geophysical Union via the DOI in this recordData availability: Project data is stored in, and available from, the UK Centre for Ecology & Hydrology (http://eidc.ceh.ac.uk).Current understanding of the role that dunes play in controlling bar and channel-scale processes and river morphodynamics is incomplete. We present results from a combined numerical modeling and field monitoring study that isolates the impact of dunes on depth-averaged and near-bed flow structure, with implications for morphodynamic modeling. Numerical simulations were conducted using the three-dimensional Computational Fluid Dynamics code OpenFOAM to quantify the time-averaged flow structure within a 400 m x 100 m channel using DEMs for which: (i) dunes and bars were present within the model; and (ii) only bar43 scale topographic features were resolved (dunes were removed). Comparison of these two simulations shows that dunes enhance lateral flows and reduce velocities over bar tops by as much as 30%. Dunes influence the direction of modeled sediment transport at spatial scales larger than individual bedforms due to their effect on topographic steering of the near-bed flow structure. We show that dunes can amplify, dampen or even reverse the deflection of sediment down lateral bar slopes, and this is closely associated with 3D and obliquely orientated dunes. Sediment transport patterns calculated using theory implemented in depth-averaged morphodynamic models suggests that gravitational deflection of sediment is still controlled by bar-scale topography, even in the presence of dunes. However, improved parameterizations of flow and sediment transport in depth-averaged morphodynamic models are needed that account for the effects of both dune- and bar- scale morphology on near-bed flow and sediment transport.Natural Environment Research Council (NERC

    Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery

    Get PDF
    Images from specially‐commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure‐from‐Motion (SfM) techniques and application of a depth‐brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near‐bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is presented and analysis suggests a depth‐brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low‐turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near‐equivalence in sediment flux. Hence, reach‐based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low‐turbidity rivers that currently have sparse information on bedload sediment transport rates
    corecore